Abstract

These experiments aim to investigate the microbial enhanced oil recovery (MEOR) technique in fractured porous media using etched-glass micromodels. Three identically patterned micromodels with different fracture angle orientation of inclined, vertical and horizontal with respect to the flow direction were utilized. A non-fractured model was also used to compare the efficiency of MEOR in fractured and non-fractured porous media. Two types of bacteria were employed: Bacillus subtilis (a biosurfactant-producing bacterium) and Leuconostoc mesenteroides (an exopolymer-producing bacterium). The results show that higher oil recovery efficiency can be achieved by using biosurfactant-producing bacterium in fractured porous media. Further investigation on the effect of the mentioned bacteria on oil viscosity, porous media permeability and wettability suggests that the plugging of matrix-fracture interfaces by an exopolymer is the main reason for the low performance of the exopolymer-producing bacterium. Oil viscosity reduction as well as the reduction of IFT was also found to be the reason for better microbial recovery efficiencies of biosurfactant-producing bacterium in the fractured models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.