Abstract
Phase separation is one of the primary quality control issues for plant-based beverages during storage. This study applied the in-situ-produced dextran (DX) from Leuconostoc citreum DSM 5577 to solve this problem. Rice flour milled from broken rice was used as the raw material and Ln. citreum DSM 5577 as the starter to prepare rice-protein yogurt (RPY) under different processing conditions. The microbial growth, acidification, viscosity change, and DX content were first analyzed. Then, the proteolysis of rice protein was evaluated, and the role of the in-situ-synthesized DX in viscosity improvement was explored. Finally, the in-situ-synthesized DXs in RPYs under different processing conditions were purified and characterized. The in-situ-produced DX caused a viscosity increase up to 1.84 Pa s in RPY and played a major role in this improvement by forming a new network with high water-binding capacity. The processing conditions affected the content and the molecular features of DXs, with a DX content up to 9.45 mg/100 mg. A low-branched DX (5.79 %) with a high aggregating ability possessed a stronger thickening ability in RPY. This study may guide the application of the in-situ-synthesized DX in plant protein foods and may promote the utilization of broken rice in the food industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.