Abstract

The effects of a decay magnetic field and hydrogen-like impurities on the ground-state binding energy (GSBE) and ground-state energy (GSE) of weak-coupling bound polarons in asymmetrical Gaussian potential (AGP) III–V compound quantum wells (QWs) were studied based on unitary transformation methods and linear combination operators. By numerical calculation, we found that the polarons were affected by the AGP, the decay magnetic field, Coulomb impurities, and the type of crystal, which led to a series of interesting phenomena, such as changes in the ground-state energy and the ground-state binding energy. The results obtained provide good theoretical guidance for optoelectronic devices and quantum information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call