Abstract

This paper presents an experimental and theoretical investigation into the structural response and energy absorbing capacity of the novel light weight sandwich panels with an aluminium core under impulsive loading. The experimental results are presented in terms of deformation/failure patterns observed and quantitative data, which were obtained from the tests by means of a ballistic pendulum with corresponding sensors; including deflection-time history of an arbitrary position of the back face, pressure-time history at the centre of the front face, and impulse transfer. In analytical modelling, the deformation process is divided into three phases, corresponding to the front face deformation, core crushing and overall structural bending, respectively. The cellular core is idealised as a rigid-perfectly-plastic-locking material, and the structure is assumed to satisfy Johansen yield criterion. A procedure of moment of momentum conservation is adopted to describe the movement of the plastic hinge lines. Finally, a parametric study has been carried out to investigate the energy absorption performance of sandwich panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call