Abstract

We present experimental and theoretical analyses of the response of high-speed, high-Reynolds-number, round jets to impulsive forcing with arc-filament-plasma actuators. The impulse response is obtained with forcing Strouhal numbers, based on the nozzle exit diameter and exit center line velocity, less than 0.1. The resulting phase-averaged near-field pressure signature displays a compact wave with a positive peak preceding a negative one, indicative of a large scale structure in the shear layer of the jet. Scaling laws derived by operating the jet at four subsonic Mach numbers are used to distinguish this hydrodynamic component of the phase-averaged jet response from the direct actuator noise. As the forcing frequency increases, the compact waves in the near-field pressure signal overlap each other, indicating interaction of the growing seeded structures. For this regime, the phase-averaged response is approximately replicated by linear superposition of the impulse response, thereby demonstrating the quasi-linearity of structure interaction. A novel application of linear parabolized stability theory yields a successful model of the impulse response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.