Abstract

Enhanced External Counterpulsation (EECP) can chronically relieve ischemic chest pain and improve the prognosis of coronary heart disease (CHD). Despite its role in mitigating heart complications, EECP and the mechanisms behind its therapeutic nature, such as its effects on blood flow hemodynamics, are still not fully understood. This study aims to elucidate the effect of EECP on significant hemodynamic parameters in the coronary arterial tree. A finite volume method was used in conjunction with the inlet pressure wave (surrogated by the measured aortic pressure) before and during EECP and outlet flow resistance, assuming the blood as newtonian fluid. The time-average wall shear stress (TAWSS) and oscillatory shear index (OSI) were determined from the flow field. Regardless of the degree of vascular stenosis, hemodynamic conditions and flow patterns could be improved during EECP. In comparison with the original tree, the tree with a severe stenosis (75% area stenosis) demonstrated more significant improvement in hemodynamic conditions and flow patterns during EECP, with surface area ratio of TAWSS risk area (SAR-TAWSS) reduced from 12.3% to 6.7% (vs. SAR-TAWSS reduced from 7.2% to 5.6% in the original tree) and surface area ratio of OSI risk area (SAR-OSI) reduced from 6.8% to 2.5% (vs. SAR-OSI of both 0% before and during EECP in the original tree because of mild stenosis). Moreover, it was also shown that small ratio of diastolic pressure (D) and systolic pressure (S) (D/S) could only improve the hemodynamic condition mildly. The SAR-TAWSS reduction ratio significantly increased as D/S became larger. A key finding of the study was that the improvement of hemodynamic conditions along the LMCA trees during EECP became more significant with the increase of D/S and the severity degree of stenoses at the bifurcation site. These findings have important implications on EECP as adjuvant therapy before or after percutaneous coronary intervention (PCI) in patients with diffuse atherosclerosis.

Highlights

  • Enhanced External Counterpulsation (EECP) can noninvasively assist circulation in a safe and effective way

  • Regardless of the degree of vascular stenosis, hemodynamic conditions and flow patterns could be improved during EECP

  • In comparison with the original tree, the tree with a severe stenosis (75% area stenosis) demonstrated more significant improvement in hemodynamic conditions and flow patterns during EECP, with surface area ratio of time-average wall shear stress (TAWSS) risk area (SAR-TAWSS) reduced from 12.3% to 6.7% and surface area ratio of oscillatory shear index (OSI) risk area (SAR-OSI) reduced from 6.8% to 2.5%

Read more

Summary

Introduction

Enhanced External Counterpulsation (EECP) can noninvasively assist circulation in a safe and effective way. In 2007, Zhang et al discovered that the shear stress in the EECP group was significantly higher than the baseline and the control group in a model of hypercholesterolemic pigs [3]. It is assumed that EECP can promote long-time relief from ischemic chest pain and improve the prognosis of coronary heart disease (CHD) by increasing shear stress. Enhanced External Counterpulsation (EECP) can chronically relieve ischemic chest pain and improve the prognosis of coronary heart disease (CHD). Despite its role in mitigating heart complications, EECP and the mechanisms behind its therapeutic nature, such as its effects on blood flow hemodynamics, are still not fully understood. This study aims to elucidate the effect of EECP on significant hemodynamic parameters in the coronary arterial tree

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call