Abstract

Recurrent spontaneous abortion (RSA) is thought to be mostly triggered by immune-related causes. Mesenchymal stem cells (MSCs), which exhibit the traits of multi-directional differentiation capacity and low immunogenicity, have recently been recommended as a viable treatment for spontaneous abortion-prone mice to increase the success of pregnancy. Amniotic membrane tissue is a byproduct of pregnancy and delivery that has a wide range of potential uses due to its easy access to raw materials and little ethical constraints. To construct an abortion-prone mouse model for this investigation, CBA/J female mice were coupled with male DBA/2 mice, while CBA/J female mice were paired with male BALB/c mice as a control. The identical volume of hAMSCs or PBS was injected intraperitoneally on the 4.5th day of pregnancy. CBA/J female mice were sacrificed by cervical dislocation on the 13.5th day of pregnancy, the embryo absorption rate was calculated, and the uterus, decidua tissues and placenta were gathered for examination. Through detection, it was discovered that hAMSCs significantly increased the expression of interleukin 10 (IL-10) and transforming growth factor beta (TGF-β), while significantly decreased the expression of interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), improved vascular formation and angiogenesis, minimized the embryo absorption rate and inflammatory cell infiltration in the RSA + hAMSCs group. In any case, hAMSCs regulate inflammatory factors and cell balance at the maternal-fetal interface, which result in a reduction in the rate of embryo absorption and inflammatory infiltration and provide an innovative perspective to the clinical therapy of RSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call