Abstract

In the smart campus, sensors are the basic units in the whole the Internet of Things structure, which play the role of collecting information and transmitting it. How to transmits more information at a certain power level has attracted the attention of many researchers. In this paper, the DV-Hop algorithm is optimized by combining simulated annealing-interference particle swarm optimization algorithm to improve the node localization of wireless sensor networks and enhance the security performance of smart campus. To address the problem that particle swarm optimization easily falls into local optimum, a perturbation mechanism is introduced in the basic particle swarm optimization algorithm. Meanwhile, the acceptance probability P is introduced in the simulated annealing algorithm to determine whether a particle is accepted when it “flies” to a new position, which improves the probability of finding a global optimal solution. Comparing the average localization error and optimization rate of the DV-Hop algorithm, PSO-DV-Hop algorithm, and the optimized algorithm. The results show a greater advantage of the algorithm. This will greatly enhance the safety performance and efficiency of the smart campus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call