Abstract

AbstractA new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.