Abstract

Visible light communication (VLC) transmission system, combined with lighting and communication, has a great application value in the field of intelligent transportation. To efficiently improve the performance of VLC-based intelligent transportation system, an improved precoding scheme is proposed and experimentally verified. Partial data-carrying subcarrier (PDS)-precoding scheme can balance the signal-to-noise ratio (SNR) and combat frequency selective fading (FSF) in the VLC-based intelligent transportation system. For ∼3.52 Gb/s DMT-VLC system with 1.9-m free space transmission, the OCT-based PDS-precoding signal shows almost the same BER performance as full data-carrying subcarriers precoding ones. Compared with the conventional scheme, the BER is reduced from 2e-3 to 8.14e-5 by using the proposed PDS-precoding. PDS-precoding is a nice choice to degrade the unbalanced damage for data-carrying subcarriers (SCs) in the bandwidth-limited VLC-based intelligent transportation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.