Abstract

In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison with the conventional moving least-squares (MLS) approximation function, the algebraic equation system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized system equations, and the Newmark time integration method for the time history analyses. In the modeling process, the penalty method is used to impose the essential boundary conditions to obtain the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.