Abstract

Gabor filters are generally regarded as the most bionic filters corresponding to the visual perception of human. Their filtered coefficients thus are widely utilized to represent the texture information of irises. However, these wavelet-based iris representations are inevitably being misaligned in iris matching stage. In this paper, we try to improve the characteristics of bionic Gabor representations of each iris via combining the local Gabor features and the key-point descriptors of Scale Invariant Feature Transformation (SIFT), which respectively simulate the process of visual object class recognition in frequency and spatial domains. A localized approach of Gabor features is used to avoid the blocking effect in the process of image division, meanwhile a SIFT key point selection strategy is provided to remove the noises and probable misaligned key points. For the combination of these iris features, we propose a support vector regression based fusion rule, which may fuse their matching scores to a scalar score to make classification decision. The experiments on three public and self-developed iris datasets validate the discriminative ability of our multiple bionic iris features, and also demonstrate that the fusion system outperforms some state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.