Abstract

This work reports on the fabrication and modification of electrospun polymer free silica nanofibers (SiO2 NFs) with the aim of creating heterogeneous antibacterial catalysts. The optical and photophysical properties of the obtained NFs i.e. bare SiO2, Ag-SiO2, Pc-SiO2 and Pc@Ag-SiO2 NFs (Pc = phthalocyanine) were compared and reported. The singlet oxygen quantum yields of the Pc-SiO2 and Pc@Ag-SiO2 NFs were also quantified and found to be 0.08 and 0.12, respectively, in water. All the modified SiO2 NFs were found to possess photoactivity against S. aureus with the most effective being the Pc@Ag-SiO2 NFs due to the synergy between the Pc and Ag nanoparticles. The bare SiO2 NFs do not exhibit any antibacterial activity while the Ag-SiO2 and Pc@Ag-SiO2 NFs were found to also exhibit dark toxicity. The generated photocatalysts are attractive because they are active against bacteria and they are easily retrievable post-application. The nanocatalysts reported herein are therefore feasible candidates for real-life antibacterial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.