Abstract

Abstract On 1–2 February 2001, a strong cyclonic storm system developed over the northeastern Pacific Ocean and moved onto the Washington coast. This storm was one of several that were documented during the first field phase of the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE). In the 1–2 February case, soundings and wind profiler measurements showed that a wide cold-frontal rainband was coincident with the leading edge of an upper-level cold front in a classical warm occlusion. Ground-based radar observations revealed the presence of subbands within the wide cold-frontal rainband and two layers of precipitation generating cells within this rainband: one at 5–7 km MSL and the other at 9–10 km MSL. The lower layer of generating cells produced fallstreaks that were traced from the cells down to the radar bright band at 2 km MSL. Observations suggest a connection between the subbands and the lower layer of generating cells. A research aircraft, equipped for cloud microphysical measurements, passed through at least two generating cells in the 5–7-km region. These cells were in their formative stage, with elevated liquid water contents and low ice particle concentrations. The microphysical structure of the wide cold-frontal rainband was elucidated by particle imagery from a Cloud Particle Imaging (CPI) probe aboard the research aircraft. These images provide detailed information on crystal habits and degrees of riming throughout the depth of the rainband. The crystal habits are used to deduce the temperature and saturation conditions under which the crystals grew and, along with in situ measurements of particle size spectra, they are used to estimate particle terminal fall velocities, precipitation rates, radar reflectivities, and vertical air motions. The radar reflectivity derived in this way generally compared well with direct measurement. Both the derived and directly measured parameters are used to determine the primary particle growth processes in the wide cold-frontal rainband. Above the melting layer, vapor deposition was the dominant growth process in the rainband; growth of ice particles by riming was small. Significant aggregation of ice particles occurred in the region just above the melting layer. A doubling in the air-relative vertical precipitation mass flux occurred between the region where sheath ice crystals formed (−3° ≤ T ≤ −8°C) and the surface. Substantial amounts of liquid water were found within the melting layer where growth occurred by the accretion of cloud droplets and also by condensation. Growth by the collision and coalescence of raindrops was not significant below the melting layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.