Abstract
Spatial lag dependence in a regression model is similar to the inclusion of a serially autoregressive term for the dependent variable in a time-series context. However, unlike in the time-series model, the implied covariance structure matrix from the spatial autoregressive model can have a very counterintuitive and improbable structure. A single value of spatial autocorrelation parameter can imply a large band of values of pair-wise correlations among different observations of the dependent variable, when the weight matrix for the spatial model is specified exogenously. This is illustrated using cigarette sales data (1963-1992) of 46 US states. It can be seen that that two close neighbours can have very low implied correlations compared to distant neighbours when the weighting scheme is the first-order contiguity matrix. However, if the weight matrix can capture the underlying dependence structure of the observations, then this unintuitive behaviour of implied correlation is corrected to a large extent. From this, the possibility of constructing the weight matrix (or the overall spatial dependence in the data) that is consistent with the underlying correlation structure of the dependent variable is explored. The suggested procedures produced very positive results indicating further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.