Abstract
White mica and tourmaline are the dominant hydrothermal alteration minerals at the world-class Panasqueira W–Sn–Cu deposit in Portugal. Thus, understanding the controls on their chemical composition helps to constrain ore formation processes at this deposit and determine their usefulness as pathfinder minerals for mineralization in general. We combine whole-rock geochemistry of altered and unaltered metasedimentary host rocks with in situ LA-ICP-MS measurements of tourmaline and white mica from the alteration halo. Principal component analysis (PCA) is used to better identify geochemical patterns and trends of hydrothermal alteration in the datasets. The hydrothermally altered metasediments are enriched in As, Sn, Cs, Li, W, F, Cu, Rb, Zn, Tl, and Pb relative to unaltered samples. In situ mineral analyses show that most of these elements preferentially partition into white mica over tourmaline (Li, Rb, Cs, Tl, W, and Sn), whereas Zn is enriched in tourmaline. White mica has distinct compositions in different settings within the deposit (greisen, vein selvages, wall rock alteration zone, late fault zone), indicating a compositional evolution with time. In contrast, tourmaline from different settings overlaps in composition, which is ascribed to a stronger dependence on host rock composition and also to the effects of chemical zoning and microinclusions affecting the LA-ICP-MS analyses. Hence, in this deposit, white mica is the better recorder of the fluid composition. The calculated trace-element contents of the Panasqueira mineralizing fluid based on the mica data and estimates of mica-fluid partition coefficients are in good agreement with previous fluid-inclusion analyses. A compilation of mica and tourmaline trace-element compositions from Panasqueira and other W–Sn deposits shows that white mica has good potential as a pathfinder mineral, with characteristically high Li, Cs, Rb, Sn, and W contents. The trace-element contents of hydrothermal tourmaline are more variable. Nevertheless, the compiled data suggest that high Sn and Li contents are distinctive for tourmaline from W–Sn deposits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.