Abstract

J. R. Shoenfield conjectured in a talk at the Berkeley Model Theory Symposium (1963) that, if b and d are non-zero recursively enumerable (r.e.) degrees such that b < d then there exists an r.e. degree c such that c < d and b U c = d. G. E. Sacks echoed this conjecture at the end of [3]. In this paper the conjecture is disproved. We construct r.e. degrees b, d such that 0 < b < d and such that for no r.e. degree c is it true that c < d and b U c = d. We are grateful to G. E. Sacks for suggesting this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.