Abstract

Accurate forward modeling is essential for solving inverse problems in exploration seismology. Unfortunately, it is often not possible to afford being physically or numerically accurate. To overcome this conundrum, we make use of raw and processed data from nearby surveys. We have used these data, consisting of shot records or velocity models, to pretrain a neural network to correct for the effects of, for instance, the free surface or numerical dispersion, both of which can be considered as proxies for incomplete or inaccurate physics. Given this pretrained neural network, we apply transfer learning to fine-tune this pretrained neural network so it performs well on its task of mapping low-cost, but low-fidelity, solutions to high-fidelity solutions for the current survey. As long as we can limit ourselves during fine-tuning to using only a small fraction of high-fidelity data, we gain processing the current survey while using information from nearby surveys. We examined this principle by removing surface-related multiples and ghosts from shot records and the effects of numerical dispersion from migrated images and wave simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call