Abstract

Due to complex injurious environment where multiple blast effects interact with the body parallel, blast-induced neurotrauma is a unique clinical entity induced by systemic, local, and cerebral responses. Activation of autonomous nervous system; sudden pressure increase in vital organs such as lungs and liver; and activation of neuroendocrine–immune system are among the most important mechanisms that contribute significantly to molecular changes and cascading injury mechanisms in the brain. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and also prevented excessive metabolic alterations in the brain of animals exposed to blast. Clinical experience suggests specific blast–body–nervous system interactions such as (1) direct interaction with the head either through direct passage of the blast wave through the skull or by causing acceleration and/or rotation of the head; and (2) via hydraulic interaction, when the blast overpressure compresses the abdomen and chest, and transfers its kinetic energy to the body's fluid phase, initiating oscillating waves that traverse the body and reach the brain. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast. These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain.

Highlights

  • The history of blast injuries coincides with the history of explosives and modern warfare

  • The wars of the twenty-first century brought a new injury pattern: (1) the overwhelming majority of injuries are caused by explosions or blasts by rocket-propelled grenades, improvised explosive devices (IEDs), and land mines (Ritenour et al, 2010); (2) the mortality caused by explosion is relatively low due to improved interceptive properties of body armors, effectiveness of treatments, and promptness of medical evacuation, among others; and (3) due to increased survivability, the rate of severe, long-term deficits shows increasing trend

  • The results of our study clearly demonstrate the importance of the indirect, i.e., blast–body interaction as well as the decisive role of autonomous nervous–neuroendocrine–immune systems interaction in the pathogenesis of blast-induced neurotrauma (BINT)

Read more

Summary

Ibolja Cernak*

Biomedicine Business Area, National Security Technology Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and prevented excessive metabolic alterations in the brain of animals exposed to blast. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast.These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain

Introduction
Discussion and Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.