Abstract
PurposeLoading condition and minimizing friction and wear using molybdenum disulfide grease in aircraft engine bearings are the focus of this research. The relationship between the milled and unmilled MoS2 (molybdenum disulfide) greases to its tribological properties, such as coefficient of friction, wear and chemical-mechanical properties of tribofilms, is examined for constant extreme pressure loading and spectrum or actual loading.Design/methodology/approachIn this study, the design of experiments (DOE) approach was used to analyze the different loadings and speeds at a specific duration of 36,000 revolutions to examine the lithium base grease wear behavior with milled and unmilled MoS2 powder. Load is treated as variable that simulates actual conditions under 1,200 and 600 rpm rotational speeds using the four-ball test with chromium steel ball bearing aircraft grade E52100.FindingsThe results indicated that ball-milled MoS2 grease tests showed reduction in wear and friction under all conditions, especially spectrum or actual loading. Unmilled MoS2 powder exhibited worse wear outcomes than the milled one. The SEM and AES analyses indicated that a tribofilm is formed on the wear surface of the milled powder grease, especially at variable loading and initially at lower loads in the ramp-up tests that significantly enhanced the contact characteristics and prevented abrasion at higher loads.Originality/valueThis research indicated that the wear resistance in actual loading might be due to frictional heating generated during the ramping-up conditions where it provided a protective film that enhanced the steady-state friction for the duration of the test. Several researchers used ASTM standards to work on constant loading conditions. This is the first time that reduced milled MoS2 powder showed significant improvement in grease performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.