Abstract

Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call