Abstract

For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.

Highlights

  • To keep the global average surface temperatures from increasing by more than 2 °C above the pre-industrial level (UNFCCC 2010), global greenhouse gas (GHG) emissions will have to decrease greatly by the end of this century (Rogelj et al 2011)

  • If faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070

  • This paper indicates that, under current trends, food-related agricultural emissions of CH4 and N2O may increase to about 12.7 Gton CO2eq/year by the year 2070

Read more

Summary

Introduction

To keep the global average surface temperatures from increasing by more than 2 °C above the pre-industrial level (UNFCCC 2010), global greenhouse gas (GHG) emissions will have to decrease greatly by the end of this century (Rogelj et al 2011). Several “dedicated,” technical options with significant mitigation potential exist, e.g. soil carbon sequestration, increased nitrogen (N)-use efficiency and nitrification inhibitors for reduction of nitrous oxide (N2O) emissions from soils (Snyder et al 2009; Akiyama et al 2010; Luo et al 2010), drainage of paddy rice fields (Fumoto et al 2010), and Electronic supplementary material The online version of this article (doi:10.1007/s10584-014-1104-5) contains supplementary material, which is available to authorized users.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call