Abstract

BackgroundTriangular fibrocartilage complex (TFCC) lesions commonly cause ulnar-sided wrist pain and instability of the distal radioulnar joint. Due to its triangular shape, discontinuity of the TFCC is oftentimes difficult to visualize in radiological standard planes. Radial multiplanar reconstructions (MPR) may have the potential to simplify diagnosis in CT wrist arthrography. The objective of this study was to assess diagnostic advantages provided by radial MPR over standard planes for TFCC lesions in CT arthrography.MethodsOne hundred six patients (49 women, 57 men; mean age 44.2 ± 15.8 years) underwent CT imaging after wrist arthrography. Two radiologists (R1, R2) retrospectively analyzed three randomized datasets for each CT arthrography. One set contained axial, coronal and sagittal planes (MPRStandard), while the other two included an additional radial reconstruction with the rotating center either atop the ulnar styloid (MPRStyloid) or in the ulnar fovea (MPRFovea). Readers evaluated TFCC differentiability and condition. Suspected lesions were categorized using Palmer’s and Atzei’s classification and diagnostic confidence was stated on a five-point Likert scale.ResultsCompared to standard planes, differentiability of the superficial and deep TFCC layer was superior in radial reconstructions (R1/R2; MPRFovea: p < 0.001; MPRStyloid: p ≤ 0.007). Palmer and Atzei lesions were present in 86.8% (92/106) and 52.8% (56/106) of patients, respectively. Specificity, sensitivity and accuracy for central Palmer lesions did not differ in radial and standard MPR. For peripheral Atzei lesions, sensitivity (MPRStandard 78.6%/80.4%, MPRStyloid 94.6%/94.6%, MPRFovea 91.1%/89.3%) and accuracy (MPRStandard 86.8%/86.8%, MPRStyloid 96.2%/96.2%, MPRFovea 94.3%/93.4%) improved with additional styloid-centered (p = 0.004/0.008) and fovea-centered (p = 0.039/0.125) reconstructions. No substantial difference was observed between both radial MPR (p = 0.688/0.250). Interrater agreement was almost perfect for each dataset (κStandard = 0.876, κStyloid = 0.894, κFovea = 0.949). Diagnostic confidence increased with addition of either radial MPR (p < 0.001).ConclusionsAncillary radial planes improve accuracy and diagnostic confidence for detection of peripheral TFCC lesions in CT arthrography of the wrist.

Highlights

  • Triangular fibrocartilage complex (TFCC) lesions commonly cause ulnar-sided wrist pain and instability of the distal radioulnar joint

  • Compared to standard planes, differentiability of the superficial and deep TFCC layer was superior in radial reconstructions (R1/R2; MPRFovea: p < 0.001; MPRStyloid: p ≤ 0.007)

  • Evaluation of TFCC depiction The median percentage of CT planes displaying the full extent of the deep TFCC layer was 32.0% for MPRStandard, 87.0% (74.0–100.0%) for MPRStyloid and 98.5% (88.3–100.0%) for MPRFovea

Read more

Summary

Introduction

Triangular fibrocartilage complex (TFCC) lesions commonly cause ulnar-sided wrist pain and instability of the distal radioulnar joint. Ulnar-sided wrist pain and instability of the distal radioulnar joint (DRUJ) can be the result of degenerative, traumatic or combined lesions of the triangular fibrocartilage complex (TFCC) [1, 2]. The peripheral TFCC consists of two main components and possesses a complex three-dimensional shape: The proximal triangular ligament inserts in the ulnar fovea and represents the deep layer of the TFCC. It is composed of the dorsal and palmar radioulnar ligament which originate directly from the cortex of the distal radius, frame the central disc and tighten oppositely during pro- and supination to maintain stability of the DRUJ [4,5,6] (Fig. 1). Together with the ulnocarpal ligaments, it supports the transition of axial force from the ulnar-sided wrist to the forearm [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call