Abstract

Collagens are among proteins that undergo several post-translational modifications, such as prolyl hydroxylation, that occur during elongation of the nascent chains in the endoplasmic reticulum. The major structural collagens, types I, II and III, have large, uninterrupted triple helices, comprising three polyproline II-like chains supercoiled around a common axis. The structure has a requirement for glycine, as every third residue, and is stabilized by the high content of proline and 4-hydroxyproline residues. Action of prolyl hydroxylases is critical. Spontaneous or targeted genetic defects in prolyl hydroxylases can be lethal or result in severe osteogenesis imperfecta. Prolines, as determinants of substrate specificity and susceptibility, also play a role in degradation of collagen by collagenolytic matrix metalloproteinases (MMPs). Targeted mutations in mice in the collagenase cleavage domain have profound effects on collagen turnover and the function of connective tissues. Prolines are thus critical determinants of collagen structure and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.