Abstract

Neurosurgeons should know the anatomy required for safe temporal lobe surgery approaches. The present study aimed to determine the angles and distances necessary to reach the temporal stem and temporal horn in surgical approaches for safe temporal lobe surgery by using a 3.0 T magnetic resonance imaging technique in post-mortem human brain hemispheres fixed by the Klingler method. In our study, 10 post-mortem human brain hemisphere specimens were fixed according to the Klingler method. Magnetic resonance images were obtained using a 3.0 T magnetic resonance imaging scanner after fixation. Surgical measurements were conducted for the temporal stem and temporal horn by magnetic resonance imaging, and dissection was then performed under a surgical microscope for the temporal stem. Each stage of dissection was achieved in high-quality three-dimensional images. The angles and distances to reach the temporal stem and temporal horn were measured in transcortical T1, trans-sulcal T1–2, transcortical T2, trans-sulcal T2–3, transcortical T3, and subtemporal trans–collateral sulcus approaches. The safe maximum posterior entry point for anterior temporal lobectomy was measured as 47.16 ± 5.00 mm. Major white-matter fibers in this region and their relations with each other are shown. The distances to the temporal stem and temporal horn, which are important in temporal lobe surgical interventions, were measured radiologically, and safe borders were determined. Surgical strategy and preoperative planning should consider the relationship of the lesion and white-matter pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call