Abstract

DNAzymes are catalytically active DNA molecules that use metal cofactors for their enzymatic functions. While a growing number of DNAzymes with diverse functions and metal selectivities have been reported, the relationships between metal ion selectivity, conserved sequences and structures responsible for selectivity remain to be elucidated. To address this issue, we report biochemical assays of a family of previously reported in vitro selected DNAzymes. This family includes the clone 11 DNAzyme, which was isolated by positive and negative selection, and the clone 18 DNAzyme, which was isolated by positive selection alone. The clone 11 DNAzyme has a higher selectivity for Co(2+) over Pb(2+) compared with clone 18. The reasons for this difference are explored here through phylogenetic comparison, mutational analysis and stepwise truncation. A novel DNAzyme truncation method incorporated a nick in the middle of the DNAzyme to allow for truncation close to the nicked site while preserving peripheral sequences at both ends of the DNAzyme. The results demonstrate that peripheral sequences within the substrate binding arms, most notably the stem loop, loop II, are sufficient to restore its selectivity for Co(2+) over Pb(2+) to levels observed in clone 11. A comparison of these sequences' secondary structures and Co(2+) selectivities suggested that metastable structures affect metal ion selectivity. The Co(2+) selectivity of the clone 11 DNAzyme showed that the metal ion binding and selectivities of small, in vitro selected DNAzymes may be more complex than previously appreciated, and that clone 11 may be more similar to larger ribozymes than to other small DNAzymes in its structural complexity and behavior. These factors should be taken into account when metal-ion selectivity is required in rationally designed DNAzymes and DNAzyme-based biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.