Abstract

The coefficient of restitution (COR) is an important constant that represents the energy dissipation during contact between two objects. Simulation using the conventional discrete element method (DEM) involves a constant COR. This study presents a DEM simulation method that uses a parameter-dependent COR. The parameter-dependent COR was obtained from a collision incident between spherical particles and a plate surface using a drop-test apparatus. Glass and polypropylene beads of 3–6-mm diameter were used while acrylic and steel were used as the plate surfaces. The particle trajectories were captured by a high-speed camera and analyzed by an image analyzer. The COR was then correlated to a parameter-dependent COR function that depends on the material, impact velocity, and temperature. Free-fall DEM simulations using a constant COR and parameter-dependent COR were compared. The parameter-dependent COR approach obtained better agreement with experimental results than the constant-COR approach. The proposed concept could be applied for other material combinations with a wide range of operating conditions to obtain a database of parameter-dependent COR values for the simulation of solid handling applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call