Abstract

Animals transform and translocate nutrients at ecologically relevant rates, contributing to eutrophication in aquatic ecosystems by mobilizing otherwise unavailable nutrients. Yet we know little about how animal-mediated nutrient cycling compares with external abiotic nutrient sources over long periods (years–decades) and at multiple timescales. To address this, we conducted a 19-year study in a eutrophic reservoir examining nitrogen (N) and phosphorus (P) inputs from watershed streams versus excretion by an abundant fish (gizzard shad, Dorosoma cepedianum) at weekly, monthly and seasonal timescales. Over the entire time period, watershed N and P loading was 33- and 3-fold greater than fish N and P excretion, respectively. However, fish N excretion exceeded watershed nutrient loading in 36% of weeks and 43% of months, and fish P excretion in 68% of weeks and 58% of months during the growing season. Fish excretion had lower temporal variability in both supply rate and N:P ratio than watershed loading. Fish excretion also supplied nutrients at a much lower molar N:P ratio than the watershed (mean of daily N:P supply ratios were 15 and 723, respectively). In eutrophic lakes with high fish biomass, fish excretion can strongly influence algal biomass and community composition. Eutrophication management efforts should consider removal of benthivorous fish, like gizzard shad, in addition to other watershed management practices to improve water quality. Future climate change will modulate the interplay between fish- and watershed-mediated nutrient dynamics by altering the geographic distribution of detritivorous fish and the frequency and severity of storm and drought events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call