Abstract

We investigate the properties of the velocity gradient tensor for spatially evolving turbulent flows (a near-wake, two axisymmetric jets and a planar mixing layer). Emphasis is placed on the study of the normal and non-normal parts of the tensor. Non-normality plays a greater role in the dynamics than is observed for HIT and does so for all spatial locations examined. This implies a greater role for the deviatoric part of the pressure Hessian. Results for the wake flow, where we isolate the coherent part of the dynamics using a modal decomposition, clarify how these competing effects operate. Previous studies have shown the shape of the Q–R diagram (formed by the second and third invariants of the characteristic equation for the tensor) is approximately universal at small-scales for different flows. The non-normal dynamics are neglected in the Q–R approach but appear to differ significantly between flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.