Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of muscle protein synthesis, and its activation has long been attributed to its translocation to the lysosome. Here, we present a novel model of mTOR activation in skeletal muscle where the translocation of mTOR and the lysosome toward the cell membrane is a key process in mTOR activation.
Highlights
INTRODUCTIONThis paper presents the novel hypothesis that the translocation of mTORC1/lysosomal complexes to the cell membrane is a critical factor driving the initial phase of protein translation in human skeletal muscle after resistance exercise or amino acid ingestion
This paper presents the novel hypothesis that the translocation of mTORC1/lysosomal complexes to the cell membrane is a critical factor driving the initial phase of protein translation in human skeletal muscle after resistance exercise or amino acid ingestion.Accepted for publication: August 17, 2018
Recent work from our laboratory suggests that translocation of mTORC1/lysosomal complexes toward the cell membrane is a key event in mTORC1 activation after resistance exercise and amino acid ingestion in human skeletal muscle
Summary
This paper presents the novel hypothesis that the translocation of mTORC1/lysosomal complexes to the cell membrane is a critical factor driving the initial phase of protein translation in human skeletal muscle after resistance exercise or amino acid ingestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.