Abstract

As the principal energy-producing organelles of the cell, mitochondria support numerous biological processes related to metabolism, growth, and regeneration in skeletal muscle. Deterioration in skeletal muscle functional capacity with age is thought to be driven in part by a reduction in skeletal muscle oxidative capacity and reduced fatigue resistance. Underlying this maladaptive response is the development of mitochondrial dysfunction caused by alterations in mitochondrial quality control (MQC), a term encompassing processes of mitochondrial synthesis (biogenesis), remodeling (dynamics), and degradation (mitophagy). Knowledge regarding the role and regulation of MQC in skeletal muscle and the influence of aging in this process has rapidly advanced in the past decade. Given the emerging link between aging and MQC, therapeutic approaches to manipulate MQC to prevent mitochondrial dysfunction during aging hold tremendous therapeutic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.