Abstract

We study the origin of the diffuse stellar component (DSC) in 117 galaxy clusters extracted from a cosmological hydrodynamical simulation. We identify all galaxies present in the simulated clusters at 17 output redshifts, starting with z= 3.5, and then build the family trees for all the z= 0 cluster galaxies. The most massive cluster galaxies show complex family trees, resembling the merger trees of dark matter haloes, while the majority of other cluster galaxies experience only one or two major mergers during their entire life history. Then, for each diffuse star particle identified at z= 0, we look for the galaxy to which it once belonged at an earlier redshift, thus linking the presence of the DSC to the galaxy formation history. The main results of our analysis are as follows. (i) On average, half of the DSC star particles come from galaxies associated with the family tree of the most massive galaxy (bright cluster galaxy – hereafter BCG), one quarter comes from the family trees of other massive galaxies and the remaining quarter from dissolved galaxies. That is, the formation of the DSC is parallel to the build-up of the BCG and other massive galaxies. (ii) Most DSC star particles become unbound during mergers in the formation history of the BCGs and of other massive galaxies, independent of cluster mass. Our results suggest that the tidal stripping mechanism is responsible only for a minor fraction of the DSC. (iii) At cluster radii larger than 250 h−1 kpc, the DSC fraction from the BCG is reduced and the largest contribution comes from the other massive galaxies; in the cluster outskirts, galaxies of all masses contribute to the DSC. (iv) The DSC does not have a preferred redshift of formation: however, most DSC stars are unbound at z < 1. (v) The amount of DSC stars at z= 0 does not correlate strongly with the global dynamical history of clusters, and increases weakly with cluster mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.