Abstract

Raman-, Brillouin-and photon correlation spectroscopy have been used to study LiCF 3SO 3 and NaCF 3SO 3 containing polyethers (PEO and PPO). At focus are factors controlling the ion-polymer interactions, the formation of transient ionic crosslinks and their effect on the local flexibility. Brillouin and photon correlation spectroscopy show that the structural relaxation time is independent of the polymeric chain length for chains longer than n≈20 repeat units. For shorter chains OH bridging slightly stiffens the dynamics whereas for CH 3 end-capped chains the local chain flexibility increases dramatically as n decreases. The crossover at ∼20 monomer indicates the number of monomers involved in the cooperative segmental rearrangements needed for structural relaxations in high M w complexes, and thus also for an ionic displacement to occur in these systems. It is found that transient crosslinks are established for n > 4 and they considerably slow down the local dynamics. The density of crosslinks is found to be strongly temperature dependent and this is the reason for departure from T g scaled dynamics in the complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.