Abstract
AbstractUnderstanding the sensitivity of groundwater generation to climate in a mountain system is complicated by the tight coupling of snow dynamics to vegetation and topography. To address these feedbacks, we combine light detection and ranging (LiDAR)‐derived snow observations with an integrated hydrologic model to quantify spatially and temporally distributed water fluxes across varying climate conditions in a Colorado River headwater basin. Results indicate that annual groundwater flow is an important and stable source of stream water. However, interflow decreases during drought as a function increased plant water use and the relative fraction of groundwater to streams increases. Seasonal snowmelt and vegetation water use regulate small recharge rates in the lower portions of the basin, but snowmelt transported via interflow from high mountain ridges toward convergent topographic zones defines preferential recharge in the upper subalpine. Recharge in this zone appears decoupled from annual climate variability and resilient to drought.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.