Abstract
Tree-ring based precipitation reconstructions are beneficial in placing interannual variability in an historical context. However, absent specificity on what is being modeled (e.g., event type or rainfall intensity), similar rainfall totals inferred from reconstructions between different years imply similar conditions. Consequently, variability in specific precipitation event types or intensity can affect radial growth widths despite no changes in overall precipitation amount. Here, we use a longleaf pine latewood chronology to demonstrate how infrequent, intense (i.e., > 2.0 SD above mean) rainfall events (IREs), representing ~ 50% of total summer (July–September) precipitation amounts and 14.1% of rainfall events, principally determine interannual variability (R2 = 40.7%) in latewood while total summer rainfall amounts excluding IREs provide minimal explanatory power (R2 = 10.4%). These results suggest that slight decreases in IRE frequency can promote significant reductions in latewood growth indicating strong sensitivity to minor changes in climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.