Abstract

The formidable ability of soil to store carbon has attracted an increasing number of studies, but few of them included soil organic carbon (SOC) sequestration as part of a carbon balance assessment in the agroecosystem. This raises some interesting questions: 1) how orchards conversion increase soil capacity to mitigate the green–house gases (GHG) emissions by storing C? 2) can it be considered in life cycle assessment (LCA)? 3) can SOC pools and soil biochemical properties determination improve LCA interpretation? To answer these questions, this study selected a ten– and fifteen–years–old peach orchards, a twenty–years–old pear orchard, a thirty–years–old kiwi orchard in south-east part of Emilia–Romagna Region (Italy), and a cereals’ field as reference. Soil samples were collected from 0 to 15 and 15–30 cm depths, and the SOC pool amounts (i.e., labile and recalcitrant) determined. LCA was used to estimate the GHG emissions (CO2eq) from the orchards. Results showed that the conversion from cereals to orchard production increased OC stock (+82 % on average) suggesting that orchards cultivation systems have the capacity to enrich soil organic matter. Fertilization had the greatest impact on CO2eq emission accounting for at least 40 % of total CO2eq emissions. Kiwi cultivation had the highest impact on GHG emissions mainly due to the high water and nutrient demand (0.045 and 0.149 kg CO2eq kg−1 fruit yr−1, respectively). When taking into account the C–CO2eq loss by fruit cultivation and C storage in soils, results would indicate that peach and pear orchard agroecosystems promote C sequestration. Conversely, kiwi cultivation showed large CO2eq emissions only partly counterbalanced by SOC sequestration. This study highlights the importance of including soils in LCA: if made mandatory this would allow a wider, yet more detailed, picture of the impact of agricultural practices on C budget. This simple step could help optimise resource management and at the same time improve agroecosystem sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.