Abstract

The Kærven Syenite Complex (KSC) is one of the oldest felsic intrusions in the Tertiary East Greenland province. Here we update our previous description of the KSC and supply a greatly expanded and comprehensive geochemical dataset. New data allow us to present a more detailed petrogenetic model for the evolution of the KSC and to investigate the geochemical characteristics of igneous cumulates subjected to loss and, occasionally, replacement of residual liquid. The KSC comprises eleven mappable units that generally young westwards. Rock types range from quartz syenite to quartz alkali feldspar syenite and alkali feldspar granite. Individual intrusive units are relatively narrow and steep-sided and are collectively suggested to represent a ring dyke complex. Basement gneiss and gabbro host rocks have locally contaminated the oldest quartz syenite KSC unit, but most of the main part of the complex escaped significant influence from host rocks. A late suite of E–W to NE–SW striking peralkaline dykes of trachytic to phonolitic compositions intrude the KSC. Compositions of the KSC rocks span a considerable range in SiO2, 59–73 wt%. Concentrations of several elements vary widely for a given SiO2 (especially at SiO2 < 66 wt%), and variation diagrams do not suggest a single model for the evolution of the units of the complex. A cumulative origin is envisaged for several KSC units. Geochemical modelling suggests that KSC magmas were derived from more than one primary magma, and that the complex evolved through a four-stage process: fractional crystallisation in precursory magma chambers was followed by final emplacement of each unit, establishment of a crystal/melt mush, expulsion of part of the residual melt and, finally, crystallisation of the remaining melt. Trace element disequilibria between alkali feldspar and host rocks in two closely associated quartz alkali feldspar syenite units indicate that highly evolved residual melt was replaced by a less evolved melt phase. Modelling of potential parent melt compositions to the Kærven magmas suggests an origin not in the Iceland plume asthenosphere, but rather in a moderately enriched source, possibly in the continental lithosphere. The course of melt evolution by fractional crystallisation is indicated to have taken place in magma chambers at depth, and repeated rise of magma into the upper crustal magma chambers and crystallisation there formed the KSC. Based on our survey of published geochemical data, the inferred parental magmas seem to have few equivalents in the North Atlantic Igneous Province and may have been generated mainly from melting of enriched dry lithospheric mantle of possibly Archaean age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call