Abstract

In the present study we have examined the effects of grana stacking on the rate of violaxanthin (Vx) de-epoxidation and the extent of non-photochemical quenching of chlorophyll a fluorescence (NPQ) in isolated thylakoid membranes of spinach. Our results show that partial and complete unstacking of thylakoids in reaction media devoid of sorbitol and MgCl(2) did not significantly affect the efficiency of Vx de-epoxidation. Under high light (HL) illumination we found slightly higher values of Vx conversion in stacked membranes, whereas in thylakoids incubated at pH 5.2 in the dark, representing the pH-optimum of Vx de-epoxidase, de-epoxidation was slightly increased in the unstacked membranes. Partial and complete unstacking of grana membranes, however, had a dramatic effect on the HL-induced NPQ. High NPQ values could only be achieved in stacked thylakoid membranes in the presence of MgCl(2) and sorbitol. In unstacked membranes NPQ was drastically decreased. The effects of grana stacking on the xanthophyll cycle-dependent component of NPQ were even more pronounced, and complete unstacking of thylakoid membranes led to a total loss of this quenching component. Our data imply that grana stacking in the thylakoid membranes of higher plants is of high importance for the process of overall NPQ. For the xanthophyll cycle-dependent component of NPQ it may even be essential. Possible effects of grana stacking on the mechanism of zeaxanthin-dependent quenching are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.