Abstract

In about 20–30% of all women with breast cancer, an increased number of cases of breast cancer can be observed in their family history. However, currently, only 5–10% of all breast cancer cases can be attributed to a pathogenic gene alteration. Molecular genetic diagnostics underwent enormous development within the last 10 years. Next-generation sequencing approaches allow increasingly extensive analyses resulting in the identification of additional candidate genes. In the present work, the germline molecular diagnostic analysis of a cohort of 228 patients with suspected hereditary breast and ovarian cancer syndrome (HBOC) was evaluated. The 27 pathogenic gene variants initially detected are listed, and their distribution in the high-risk BRCA1 and BRCA2 genes is presented in this study. In ten high-risk patients, in whom, to date, no pathogenic variant could be detected, an extended genetic analysis of previously not considered risk genes was performed. Three variants of uncertain significance and one pathogenic variant could be described. This proves the importance of extended analysis using current molecular genetic methods.

Highlights

  • Human genetic analyses are an integral part of everyday clinical practice due to their scope and importance for subsequent therapeutic decisions

  • The analysis of the present cohort shows that within a five-year period, the standard analysis method has evolved from Sanger sequencing to next-generation sequencing

  • A large data resource is needed to achieve an assessment of candidate genes in terms of their clinical relevance and to incorporate them into routine diagnostics

Read more

Summary

Introduction

Human genetic analyses are an integral part of everyday clinical practice due to their scope and importance for subsequent therapeutic decisions. Around 30% of all women with breast cancer in Germany have a family history of breast cancer. They fulfill the inclusion criteria for genetic testing regarding hereditary breast and ovarian cancer syndrome (HBOC) [1]. In hereditary breast and ovarian cancer syndrome, high-risk genes (BRCA1, BRCA2, TP53, and PALB2) are distinguished in addition to moderately penetrant risk genes (currently ATM, BARD1, BRIP1, CDH1, CHEK2, RAD51C, and RAD51D) [2]. In the scope of the German Consortium for Hereditary Breast and Ovarian Cancer, other candidate genes (e.g., NBN, FANCM, XRCC2, and RECQL) are currently co-analyzed for research purposes and their significance in contributing to breast and ovarian cancer is under investigation [3]. Due to the increased lifetime risk of breast cancer of up to 70% [5], these women are eligible for an intensified screening and follow-up program [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call