Abstract

This paper proposes a methodology for creating simplified structural schemes and forward geometric models for industrial robots with serial architecture, with the goal of reducing thermal deformation errors that negatively impact positioning accuracy during operation. Unlike classical approaches, the proposed methodology introduces modifications to the order of matrix multiplication and incorporates new parameters to create a forward geometric model that better corresponds to the deformation characteristics of these robots. Details are presented on how to build and employ this extended model and integrate it into a thermal error compensation algorithm. The implementation of the algorithm in a software application is presented along with experimental results that demonstrate its effectiveness. This work addresses a real phenomenon that occurs in industrial robot operation and has implications for improving the performance of robots in manufacturing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call