Abstract

Neural circuits in sensory pathways develop through a general strategy of overproduction of synapses followed by activity-driven pruning to fine-tune connectivity for optimal function. The early visual pathway, consisting of the retina → visual thalamus → primary visual cortex, has served for decades as a powerful model system for probing the mechanisms and logic of this process. In addition to these feedforward projections, the early visual pathway also includes a substantial feedback component in the form of corticothalamic projections from the deepest layer of primary visual cortex. The role of this feedback in visual processing has been studied extensively in mature animals, yet historically, its role in development has received comparatively little attention. Recent technological advances allowing for selective manipulation of neural activity in development led to the uncovering of a role for feedback in guiding the refinement of the forward projection from retina to visual thalamus. Here we discuss the implications of feedback exerting influence on the development of sensory pathways. We propose several possible advantages to constructing neural circuits with top-down regulation, and discuss the potential significance of this finding for certain neurologic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.