Abstract

Abrupt heterojunction bipolar transistors (HBTs) show interfaces where discontinuities in the energy levels appear. Currents through these interfaces are controlled by tunneling and thermionic emission. The values of these currents depend on the form and height of the energy barriers, which are disturbed by the heavy doping effects on semiconductor energy band structure. In this work, the real bandgap narrowing is distributed between the conduction and valence bands according to Jain-Roulston model, and its effect on the base and collector currents of Si/SiGe and InP/InGaAs HBTs is analyzed. This analysis is carried out through a numerical model which combines the drift-diffusion transport in the bulk of transistor with the thermionic emission and tunneling at the base-emitter interface, and an empirically determined surface recombination current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.