Abstract

A variant of lactate dehydrogenase from Bacillus stearothermophilus has been engineered by site-directed mutagenesis in which an active-site arginine residue at position 171 in the protein sequence is replaced by lysine. Replacement of this arginine by lysine has no effect on co-enzyme binding, a relatively small effect on the rate of turnover of the enzyme, but causes a 2000-fold increase in the Michaelis constant for pyruvate, a 6000-fold increase in the dissociation constant for oxamate and results in a Michaelis constant for lactate which is too high to measure. The decrease in binding energy for these carboxylate-containing substrates caused by this mutation is very large, around 5.5 kcal.mol-1 and in part, is explained by the small increase in the distance of a lysine-substrate carboxylate interaction at this site and the absence of the additional hydrogen bond from a two-point arginine-carboxylate interaction. Consistent with this last observation, the ability of this mutant enzyme to stabilize an NAD+-sulphite compound in its active site (an alternative enzyme-substrate complex which does not involve bifurcated bonding to arginine) is only reduced 14-fold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.