Abstract

In a 'feed forward' algorithm, the slope of the activation function is directly influenced by a parameter referred to as 'gain'. In this paper, the influence of the variation of 'gain' on the learning ability of a neural network is analysed. Multi layer feed forward neural networks have been assessed. Physical interpretation of the relationship between the gain value and learning rate and weight values is given. Instead of a constant 'gain' value, we propose an algorithm to change the gain value adaptively for each node. The efficacy of the proposed method is verified by means of simulation on a function approximation problem using sequential mode of training. The results show that the proposed method considerably improves the learning speed of the general back-propagation algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.