Abstract

Background: The parameter uncertainty in the six-dimensional health state short form (SF-6D) value sets is commonly ignored. There are two sources of parameter uncertainty: uncertainty around the estimated regression coefficients and uncertainty around the model’s specification. This study explores these two sources of parameter uncertainty in the value sets using probabilistic sensitivity analysis (PSA) and a Bayesian approach. Methods: We used data from the original UK/SF-6D valuation study to evaluate the extent of parameter uncertainty in the value set. First, we re-estimated the Brazier model to replicate the published estimated coefficients. Second, we estimated standard errors around the predicted utility of each SF-6D state to assess the impact of parameter uncertainty on these estimated utilities. Third, we used Monte Carlo simulation technique to account for the uncertainty on these estimates. Finally, we used a Bayesian approach to quantifying parameter uncertainty in the value sets. The extent of parameter uncertainty in SF-6D value sets was assessed using data from the Hong Kong valuation study. Results: Including parameter uncertainty results in wider confidence/credible intervals and improved coverage probability using both approaches. Using PSA, the mean 95% confidence intervals widths for the mean utilities were 0.1394 (range: 0.0565–0.2239) and 0.0989 (0.0048–0.1252) with and without parameter uncertainty whilst, using the Bayesian approach, this was 0.1478 (0.053–0.1665). Upon evaluating the impact of parameter uncertainty on estimates of a population’s mean utility, the true standard error was underestimated by 79.1% (PSA) and 86.15% (Bayesian) when parameter uncertainty was ignored. Conclusions: Parameter uncertainty around the SF-6D value set has a large impact on the predicted utilities and estimated confidence intervals. This uncertainty should be accounted for when using SF-6D utilities in economic evaluations. Ignoring this additional information could impact misleadingly on policy decisions.

Highlights

  • The need to appropriately quantify the health benefits produced by competing healthcare strategies in terms of quality-adjusted life years (QALYs) has become an increasingly important consideration for decision makers tasked with allocating healthcare funding

  • The standard errors of the mean utilities for all health states when parameter uncertainty is tolerated using the probabilistic sensitivity analysis (PSA) approach were larger than those ignoring parameter uncertainty

  • Upon quantifying the impact of parameter uncertainty in the valuations when the SF-6D is used to estimate a population’s mean utility, the true standard error was underestimated by 79.1% and 86.15% when parameter uncertainty was not accounted for using the PSA and Bayesian approaches, respectively

Read more

Summary

Introduction

The need to appropriately quantify the health benefits produced by competing healthcare strategies in terms of quality-adjusted life years (QALYs) has become an increasingly important consideration for decision makers tasked with allocating healthcare funding. The parameter uncertainty in the six-dimensional health state short form (SF-6D) value sets is commonly ignored. There are two sources of parameter uncertainty: uncertainty around the estimated regression coefficients and uncertainty around the model’s specification. This study explores these two sources of parameter uncertainty in the value sets using probabilistic sensitivity analysis (PSA) and a Bayesian approach. UK/SF-6D valuation study to evaluate the extent of parameter uncertainty in the value set. We used a Bayesian approach to quantifying parameter uncertainty in the value sets. The extent of parameter uncertainty in SF-6D value sets was assessed using data from the Hong Kong valuation study. Results: Including parameter uncertainty results in wider confidence/credible intervals and improved coverage probability using both approaches

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.