Abstract

(Co) variances for greasy fleece weight (GFW), clean fleece weight (CFW), mean fibre diameter (MFD), staple strength (SS), coefficient of variation of fibre diameter (CVFD), birthweight (BW), weaning weight (WW), and yearling weight (YW) were estimated for 5108 Australian Merino sheep from the CSIRO Fine Wool Project, born between 1990 and 1994. Covariances between these traits and number of lambs weaned per ewe joined (NLW) were also estimated. Significant maternal genetic effects were found for GFW, CFW, BW, WW, and YW. Estimates of heritability were biased upwardly when maternal effects were ignored. The maternal heritability estimates for GFW, CFW, BW, WW, and YW were 0.17, 0.15, 0.38, 0.28, and 0.13, respectively. Maternal effects were not important for MFD, CVFD, SS, and NLW. Direct-maternal genetic correlations within each fleece weight and bodyweight trait were estimated to be moderately negative (–0.26 to –0.48). The effect of ignoring maternal genetic effect was explored using selection index theory. Accounting for the maternal effects in both the selection criteria and breeding objective increased the overall response by 14.3%, 4.8%, 2.6%, 1.4%, and 0.0% in 3, 6, 12, 20 and 30% micron premium scenarios, respectively, compared with when the maternal effects were only included in breeding objective. Complete ignorance of the maternal effects led to overestimation in overall response of 2.8–35.7% for different micron premium scenarios in contrast to when the maternal effects were ignored in the selection index weight, but were included in the breeding objective. The results indicate that the maternal genetic effects of fleece weight and bodyweight should be considered in Merino breeding programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call