Abstract

DNA methylation based biomarkers have considerable potential for molecular diagnostics, both as tumor specific biomarkers for the early detection or post-therapeutic monitoring of cancer as well as prognostic and predictive biomarkers for therapeutic stratification. Particularly in the former, the accurate estimation of DNA methylation is of compelling importance. However, quantification of DNA methylation has many traps for the unwary, especially when heterogeneous methylation comprising multiple alleles with varied DNA methylation patterns (epialleles) is present. The frequent occurrence of heterogeneous methylation as distinct from a simple mixture of fully methylated and unmethylated alleles is generally not taken into account when DNA methylation is considered as a cancer biomarker. When heterogeneous DNA methylation is present, the proportion of methylated molecules is difficult to quantify without a method that allows the measurement of individual epialleles. In this article, we critically assess the methodologies frequently used to investigate DNA methylation, with an emphasis on the detection and measurement of heterogeneous DNA methylation. The adoption of digital approaches will enable the effective use of heterogeneous DNA methylation as a cancer biomarker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.