Abstract
AbstractIt has been understood for some time that elastic energy can cause surface roughening during a solid surface motion. This instability has recently led to a novel experimental technique to determine stress state on the surface of a solid by measuring the surface profile before and after etching [1]. Along a separate line of investigation, Aziz and co-workers has recently described a different kind of instability, also driven by stress [2]. Their experiments showed that the activation energy of the surface mobility depends linearly on the stress state, and this dependence can cause surface instability. The two kinds of instabilities have very different characteristics. In this paper, we describe a linear stability analysis of a three dimensional interface evolving under stress. The interface can be destabilized either by stress-dependent activation energy or by elastic energy. The implications for the stress measurement technique are discussed. It is suggested that the same experimental procedure be used to measure surface energy and activation strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.