Abstract

AbstractEpigenetics is the study of changes in gene expression patterns that occur without any modification of the underlying nucleotide sequence of the DNA. Modifications of the so‐called epigenome include complex transient or permanent chemical changes of the DNA or histone proteins resulting in the suppression or enhancement of gene expression, together with an array of post‐translational events that modify the translational products. Epigenomic programming (EP) of the genome is an essential component of embryonic development in animals from the totipotent fertilized egg to the pluripotent stem cells, stem cell differentiation and final tissue and organ formation. Many of these EP processes are influenced transiently and some permanently by environmental influences. In eutherian mammals, environmentally related EP of embryos is linked to permanent changes in the phenotype of the progeny, some of which have been associated with adult onset metabolic disorders. Moreover, because some of the epigenetic remodelling occurs in both the soma and germ line, the resultant phenotypic characteristics (some of which are linked to disease states) may be heritable. Although far less is known about the effects of environmentally linked EP on the ontogeny of fishes, the available information suggests that the EP processes are similar amongst all vertebrates, and there are clear parallels between fish and mammals that are discussed in this paper. Our perspective takes the well‐established findings in mammals and uses them to proactively extrapolate to the as yet under‐recognized implications of EP for fish biology and for fish production in intensive aquaculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.