Abstract

The novel coronavirus (COVID-19) has considerably spread over the world. Whereas children infected with coronavirus (COVID-19) are less expected to develop serious infection compared with adults, children are even at the risk of increasing serious illness and problems from COVID-19. The risk factor of COVID-19 laboratory findings plays a major role in clinical symptoms, diagnosis, and medication. Because the number of COVID-19 cases increased, it takes extra time to explain the lab results and provide an accurate diagnosis. Laboratory findings in children have been only moderately described in some experimental studies. This study aimed to exploit a deep learning approach for detecting COVID-19 in children based on Laboratory findings. The dataset used in this research had 5664 patient samples (4927 negatives and 737 positives for COVID-19). The ANN model allowed the classification of negative and positive samples after the implementation of SMOTE to manage the severe data imbalance. To evaluate the predictive performance of our model, precision, F1-score, recall, AUC, and accuracy scores were calculated. The results of the study illustrate that our predictive model identifies patients that have COVID-19 disease at an accuracy of 93%, and recall and precision values were 76.47% respectively. Our analysis shows that the model could assist in the diagnosis and prediction of COVID-19 severity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.